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The classical part of the isomorphic model for closed-shell nuclei is presented 
based on two physical assumptions, namely (a) the nucleons of a closed shell 
nucleus, considered at their most probable positions, are in an instantaneous 
dynamic equilibrium on spherical shells, and (b) the dimensions of the shells 
are determined by their close packing given that a neutron and a proton are 
represented by hard spheres of definite sizes. The first assumption leads to the 
instantaneous angular structure, and the second to the instantaneous radial struc- 
ture of closed-shell nuclei. Applications of the model coming from this classical 
part alone and presented here are structural justification of all magic numbers, 
neutron (proton) and charge rms radii, nuclear densRies of closed-shell nuclei, 
and Coulomb, kinetic, and binding energies. All the predictions are in good 
agreement with experimental data. A characteristic novelty of the isomphic model 
is that assumption (a) is related to the independent particle model, and assump- 
tion (b) to the liquid-drop model. The isomorphic model may provide a link 
between these two basic nuclear physics models since it incorporates features 
of both. 

1. I N T R O D U C T I O N  

Even  though  there  is not  yet an exact theory  o f  nuc lear  structure,  there  

are some general ly  accepted  concepts  that  have engendered  the deve lopmen t  
of  a n u m b e r  o f  successful models .  A m o n g  these models ,  the i somorph ic  

mode l  ( IM)  has a un ique  feature,  its extensive use o f  symmetry,  a concept  

that  has p roved  to be highly successful in many  other  areas o f  physics and 

chemistry.  Specifically,  the IM is a microscopic  nuc lear  structure mode l  for 

the g round  state, and it has been  deve loped  independen t ly  o f  the es tabl ished 

shell mode l  and the col lect ive models.  In fact, in the IM we are concerned  
mainly  with the closed-shel l  nuclei  which const i tute  the core o f  all nuclei .  

1Tandem Accelerator Laboratory, Nuclear Research Center "Demokritos," Athens, Greece. 
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Thus, the IM deals with the depth of the Fermi sea, 2'3 which is not the 
subject matter  of  either the independent particle models or the collective 
models. Therefore the IM should no t  be considered as a competi tor  to any 
of the above models but rather as a common complementary part  of  them. 

While the IM is known through several publications (Anagnostatos, 
1973; 1977; 1978; 1980a, b; de Boer and Mang, 1973; Anagnostatos et al., 
1980; 1981; Anagnostatos and Panos, 1982), the present study attempts to 
put it on a firmer footing than before by intoducing into it a new fundamental  
physical assumption,  the close packing of  nuclear shells. This assumption 
has strengthened the physical basis of the IM substantially and has thus 
led to a high accuracy of  its predictions. To put it otherwise, the aforemen- 
tioned new hypothesis underlines a simple structural rule which reproduces 
the size and other properties of  nuclei all the way up to Pb and at the same 
time implies a common origin of  both the independent  particle and the 
collective models. Consequently this work may provide a picture of  the 
nucleus which can unite the available information about nuclei into a 
consistent body of knowledge. 

The IM is divided into three basic parts: the classical, the semiclassical, 
and the quantum mechanical  parts. The present paper  has as its subject the 
classical (geometrical) part  which, due to the introduction of the close 
packing assumption,  is presented and applied here in a way that is more 
satisfactory from a physical point of  view than the one adopted in our 
previous works. Indeed, when one examines the most probable positions 
of  all particles of  a particular shell, a real form results, a specific high- 
symmetry polyhedron of definite size. Now, as will be shown in this contribu- 
tion, the incorporation into our model o f  the assumption of  the close packing 
of nuclear shells reveals that the different concentric polyhedral shells of  a 
closed-shell nucleus have definite highly symmetric relationships to each 
other, thus permitting one to form a mental image of the structure of  each 
of the closed-shell nuclei. We have found that the properties of  such an 
imaginary structure for any closed-shell nucleus reproduce with high 
accuracy the experimentally known properties for that nucleus itself. 

Although in this contribution we focus on the classical part  of  the IM, 
we wish to say a few words about the other two parts of  our model. The 
semiclassical part  of  the IM deals with an isomorphism (one-to,one corre- 
spondence) which can be established between the sets of  quantum numbers 

2There are some other models that deal with the structural picture of the nucleus, but are 
essentially different from the isomorphic model. See, e.g., Cook (1976), Robson (1978), 
Margenau ( 1941 ), and Pauling (1965a). 

3What we really know about the nucleus refers mostly to the valence nucleons on top of the 
Fermi sea and we know very little of what is really happening in the depths of the fermi sea 
(Wilkinson, 1977). 
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(n, l, m, s, r) and the points of the point space made up of the vertices of 
the polyhedra employed to represent the average shapes of nuclear shells. 
The name of the model is taken from this isomorphism. The quantum 
mechanical part introduces a new potential and solves the SchrSdinger 
equation for that potential. No adjustable parameters are utilized; instead 
the boundary conditions and the constants involved in the wave function, 
derived from the SchrSdinger equation for a particular nucleon, are deter- 
mined from the coordinates of the point (vertex) having, according to the 
isomorphism made, the same set of quantum numbers as that nucleon. 

Our remark that high symmetry and ground-state nuclear structure 
might be correlated is supported by Moszkowski's (1957) statement that 
quantum states of lowest energy exhibit simple shapes which are determined 
by the inherent symmetry of the system, and that nuclear interactions 
(short-ranged, attractive) favor states of maximum spatial symmetry. We 
are also aware that this polyhedral specification of symmetry, at first sight, 
lends itself to a classical treatment only. At the same time we know that 
any realistic representation of nuclear structure must follow quantum 
mechanics. As Inglis (1969) has remarked, however, the development of a 
nuclear model may follow a pictorial approach in the spirit of  the correspon- 
dence principle that there is at least a rough correspondence between 
quantum mechanics and quantized classical physics (e.g., classical quantiz- 
ation of space impl iedby polyhedral shell structure, as used in our model) 
that gets better as quantum numbers get larger. Thus, a geometrical under- 
standing of  nuclear stucture has a rational basis. At this stage we wish to 
point out that current nuclear quantum mechanical models may be interpret- 
able in crystallographic terms and that such understanding could show that 
nuclear shell structure is more general than the independent-particle basis 
upon which it currently rests. 

Our paper is organized as follows. In Section 2 we describe the assump- 
tions and development of the new IM, which is the main purpose of our 
work. Section 3 gives an account of some of the main applications of the 
model to the following nuclear properties: nuclear shells and magic num- 
bers, nuclear radii, nuclear density, and kinetic, Coulomb, and binding 
energies. Section 4 offers a comparison between the predictions of the model 
and those of other nuclear structure models. Section 5 consists of the 
summary and conclusions. There are also five appendices. 

2. DEVELOPMENT OF THE IM 

In this section the IM is developed following a deductive process based 
on two assumptions. As a result, it is found that the different shells of a 
closed-shell nucleus have instantaneous dynamic shapes represented by 
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specific concentric high symmetry polyhedra of  definite sizes, derived from 
one another (see Figure 1 ). The vertices of these polyhedral shells, represent- 
ing most probable nucleon positions, form a maximum spatial symmetry 
point-space. 

2.1. Assumptions 

The IM is based on two assumptions: 
(a) The neutrons (protons) of a closed neutron (proton) shell at the 

ground state, considered at their most probable positions, are in dynamic 
equilibrium on a sphere. 

(b) The dimensions of the shells of a closed-shell nucleus at the ground 
state are determined by the close-packing of  the shells themselves, provided 
that a neutron and a proton are represented by hard spheres of  definite sizes 
(i,e., rn = 0.974 fm and r, = 0.860 fin, which constitute the only parameters 
of  the model). 

Assumptions (a) and (b) are independent of  each other and appear to 
be plausible and both consistent with the least energy principle. The concept 
that the nucleus has a shell structure is inherent in assumption (a), and, as 
we shall see shortly, assumption (a) alone leads to the angular part of the 
instantaneous nuclear structure of the closed-shell nuclei from 4He to 2~ 
while from assumption (b) the radial part of  this structure is derived. In 
the following, the above two assumptions are discussed with the aim of 
clarifying their physical basis. 

The main assumption of  the simple shell model (usually very successful 
in spherical nuclei), viz., that the individual nucleons in a nucleus more 
relatively freely in well-defined single-particle orbitals, may be here under- 
stood in terms of a dynamical equilibrium in the following sense. Each 
nucleon in a nucleus at the ground state is in a dynamic equilibrium with 
the other nucleons, and, as a consequence, its motion may be described 
independently of the motion of the other nucleons. 

In particular, the model assumes a specific equilibrium of  nucleons, 
which is valid whatever the law of nuclear force may be. Clearly our 
assumption does not preclude the existence of  an equilibrium of nucleons 
that corresponds strictly to the exact law of  the nuclear force. In  fact, if we 
denote by S the set of equilibria in the sense of our hypothesis and by S~ 
the set of  equilibria pertaining to the particular law of the nuclear interaction, 
then 

S __ S~ (1) 

Evidently, equation (1) could lead to some contradictions with experimental 
data about nuclear shells and other properties since we might overlook 
some cases of equilibrium. However, assumption (a) seems rather justified, 
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Fig. 1. Instantaneous dynamic average forms of  nuclear shells from 4He to 2~ presented 
by equilibrium polyhedra. Polyhedra lying on the left of  the heavy central vertical line stand 
for proton shells, while those on the right stand for neutron shells, with a correspondence 
between them such that next to a proton (neutron) polyhedron (in each of  the levels of  the 
figure, which are labelled A-F  for protons and a - f  for neutrons) a neutron (proton) polyhedron 
exists that has the same rotational group (i.e., it is its reciprocal in geometrical language). The 
angular  vertex distribution of the rhombic tr iacontahedron in insert 1 is identical to the angular  
vertex distributions of the three proton polyhedra hexadedron (cube), icosahedron, and 
dodecahedron (Figures t D, 1D', and 1D", respeotively) taken together [where vertices labeled 
h (holes) are excluded; see text]. The same is true for insert 2 (which differs from insert 1 
only in orientation) and the neutron polyhedra in Figures le, le', and le". Also, the angular  
vertex distribution of the imaginary dodecahedron made of the centers of  all triangular faces 
of the rhomb-icosi-dodeca-hedron in Figure l f '  is analyzed into the angular  distribution of" 
dodecahedral  vertices occupied by sets of  three neutrons (Figure lf ' )  and the angular  distribu- 
tion of  dodecahedral  vertices (see letters h in Figure If') forming an hexahedron (cube; Figure 
lf). Even similar polyhedra in the figure (with the exception of the cubes) have different 
angular  vertex distributions, since they have different orientations. The occupied polyhedral 
vertices stand for most  probable positions of nucleons presented by hard spheres of  definite 
sizes (r, = 0.974 fm and rp = 0.860 fm). All polyhedra of  the figure of the figure are considered 
super imposed with a common center and relative orientations as. shown, which bring the "hard 
spheres" of  each proton (neutron) shell in contact with the "hard  spheres" of the previous 
and of the next proton or neutron shell. For the derivation of the cumulative proton number  
Z = 50* see text. 
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because of the successes of  the IM (Sections 3 and 4) wherever it has been 
applied. What should be stressed here is that the hypothesis concerning the 
equilibrium of nucleons considered on spheres leads uniquely to equilibrium 
polyhedra (Leech, 1957) 4 (see Appendix A) whose vertices represent the 
most probable positions of  nucleons. The space arrangement of equilibrium 
polyhedral vertices corresponds to the minimization of the "mutual repul- 
sion" components of the real nucleon-nucleon interaction including the 
Coulomb force. 

We should like to emphasize yet again that, according to the 1M, the 
nucleons are in constant motion and that the relative positions of the 
nucleons (polyhedral vertices) shown in Figure 1 refer to a particular instant 
in time which presumably gives the average values. The periods of motion 
are such that the same relative positions recur after a fixed time interval. 
What the vertices of a polyhedron actually represent are the most probable 
positions of the nucleons due to their mutual  repulsion. This repulsion 
ensures regions of maximum probability disposed over the surface of each 
shell. The mutual separation of these regions of maximum probability 
depends on the number of particles in the shell and not on the hard-core 
radius of the nucleon-nucleon interaction (Anagnostatos and Panos, 1982), 
which is substantially less than these mean separations. 

We turn now to assumption (b). In order for the physical significance 
of the close packing 5 of shells to be understood, we employ an effective 
two-nucleon potential. As such a potential we take the one introduced in 
Anagnostatos and Panos (1982), which is reproduced in Figure 2. In this figure 
two hard spheres representing two nucleons in contact (with the one in the 
origin of coordinates) are shown. Obviously, the minimum two-nucleon 
separation corresponds to the case of two protons since according to 
assumption (b) protons are depicted by smaller hard spheres than neutrons. 
It is clear now from Figure 2 that even for this minimum separation we 
have attraction between the two nucleons. That is, this minimum separation 
(1.720 fro) is larger than the radius rm (1.21885 fm) where the two-nucleon 
potential takes its minimum value. Therefore, since the repulsive part of 
the effective two-body potential never participates in the ground state 

4In the a-cluster model (Margenau, 1941) the clusters are associated with the vertices of 
particular solids. Some of these solids may constitute equilibrium forms, but this equilibrium 
refers to clusters whereas the IM considers equilibrium of neutrons and protons, which makes 
the IM essentially different from the a-cluster model. 

5It is important to make a distinction between the concept of the close packing of nuclear 
shells as introduced and applied in this paper and the concept of close packing as utilized 
in the polyspheron theory (Pauling, 1965a). Indeed, in that theory the idea of close packing 
refers to the close packing of spherons making up the nucleus, a spheron being an aggregate 
of 0 to 2 neutrons and (or) 0 to 2 protons in all possible combinations. 
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Fig. 2. Effective two-nucleon potential V versus separ- 
ation distance r. The core radius of V is denoted by re, 
while the value of r where V takes its minimum value 
Vm is denoted by rm. The two circles represent the hard 
spheres of two protons (rp = 0.860 fm) in contact, one 
of which is at the origin. 

r ( f m )  
3 

r;: =1.13 121885 

-305-  "Vm =- 27.5 

nucleon interaction, the least energy of the nuclear system, as far as the 
attractive part of the nuclear force is concerned, corresponds to the least 
distances among nucleons, given of course that the nuclear shells retain 
their polyhedral dynamic shapes by assumption (a). Consequently, the 
minimum separation among all nucleons of a shell is achieved when the 
radius of the shell attains its minimum value. This minimum value is 
obtained, with the exception of the first shell (whose nucleons really are in 
contact), through the contact of nucleons of successive shells, i.e., when the 
nucleons of a shell come in contact with those of the previous shell, it being 
either a proton or a neutron shell. In other words, the nucleons of a shell 
(excepting the first) cannot touch each other, because such a contact would 
mean an even smaller shell radius, which leads to overlapping of the hard 
spheres of  the nucleons of the shell with those of the previous one, contrary 
to assumption (b). 

2.2. Principles 

Besides assumptions (a) and (b) we use in the course of the development 
of the IM the following generally accepted physical principles: 

(a)  Identical particles in a shell are interchangeable (indistin- 
guishable). 

(/3) According to quantum mechanics the wave function has the basic 
property of  parity, i.e., 4~(~) = •  From this we conclude that ~b2(?) = 
~2(_ ~) for all f and, hence, also for the ~ corresponding to the most probable 
position. Therefore for each particle at the most probable position there 
exists its central symmetric counterpart. 

(y) Under the concept nuclear shell we understand a saturated structure 
in the sense that any addition of particles (which implies exertion of forces 
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between the added particles and the particles already in the shell) is 
impossible in that shell. Any new particles must begin a new shell. 

2.3. The Possible Instantaneous Angular Distributions of the Particles in 
the IM 

According to Leech (1957) concerning particles of the same kind on 
a sphere, there are only certain configurations in which these particles are 
in equilibrium regardless of the specific law of force among the particles. 
In particular, the only such configurations are the following two sets of 
configurations: 

(A) Those in which the particles are equally spaced on a great circle, 
with or without two additional particles, one at each pole. 

(B) Those which, in relation to a high-symmetry polyhedron (inscribed 
in the sphere), comprise a set, of particles at its vertices or a set at the 
midpoints of its edges or a set at the centers of its faces or any two or all 
there of these sets taken together. All these high-symmetry polyhedra 
[namely, the zerohedron (0-h), tetrahedron (4-h), hexahedron (6-h), octahe- 
dron (8-h), cube/3ctahedron (6-8-h), dodecahedron (12-h), icosahedron 
(20-h), icosidodecahedron (20-12-h), rhombic dodecahedron (r-12-h), 
rhombic triacontahedron (r-30-h)], hereafter called equilibrium polyhedra, 
are shown and discussed in Appendix A, (Figure 4, rows 1 and 2). Among 
the three possible positions (vertices, midpoints of edges, centers of faces) 
for identical particles with respect to a polyhedron we take the vertices. We 
may do so without any loss of generality, since by taking the midpoints of 
edges or the centers of faces, we generate a polyhedron which is again an 
equilibrium polyhedron, while taking any two or all three of these three 
possible positions is equivalent to taking two or three of the equilibrium 
polyhedra in the appropriate orientation (i.e., vertices of the one correspond 
to the midpoints of edges or to the centers of faces of the other). Thus, all 
configurations of Leech's type (B) are essentially the configurations of the 
vertices of the ten equilibrium polyhedra given in Appendix A, Figure 4, 
rows 1 and 2, which can be used more than one time. 

In the following by utilizing principles ( a ) - ( y )  we shall exclude from 
configurations (A) and (B) certain configurations. Indeed, out of the equi- 
librium configurations (A) (excluding plane configurations on a great circle) 
only the zerohedron (resulting from the two poles themselves) and the 
octahedron (resulting from a square in a great circle plus two poles) obey 
principle (a) ,  which requires indistinguishability of particles, which in the 
model means indistinguishability of polyhedral vertices. Both these poly- 
hedra belong also to configurations (B). In all other three-dimensional 
configurations of set (A) each pole has a different number of neighbor 
vertices from those corresponding to each of the vertices of the regular 
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polygon on the great circle and thus it is distinguishable from them. Both 
these polyhedra belong also to configurations (B). Also from configurations 
(B) the r-12-h and r-30-h are excluded as having two types of vertices A 
and B with different numbers of neighbors, which makes them distinguish- 
able (Figure 4). It should be noted that r-12-h and r-30-h are excluded as 
they stand, but they can be analyzed into the two-member polyhedra, that 
is the r-12-h into a cube and an 8-h, and the r-30-h into a 12-h and a 20-h, 
which taken together have the same angular distribution as the two initial 
polyhedra r-12-h and r-30-h, respectively. Further, out of the equilibrium 
polyhedra of Figure 4, rows 1 and 2, the 4-h is the only one not obeying 
principle (B) and is therefore also excluded (since each vertex of this 
polyhedron does not have its central symmetric counterpart). Finally, the 
6-8-h is excluded because it does not satisfy principle (y),  since any addition 
of particles may cause transformation of this polyhedron into the more 
symmetric (stable equilibrium) 20-h which has the same number of vertices. 
The r-12-h (even analyzed into an 8-h and a 6-h) is now excluded since its 
reciprocal (Coxeter, 1963) 6-8-h is excluded from above. 

Thus, applying assumption (a) and principles (a)-(3 ')  we are left with 
seven equilibrium polyhedra, namely, the 0-h, 6-h, 8-h, 12-h, 20-h, 20-12-h, 
and the "r-30-h" (when considered analyzed into two polyhedra). All these 
polyhedra form the following reciprocal (Coxeter, 1963) (Appendix A) 
pairs: 0-h and 0-h, 8-h and 6-h, 20-h and 12-h, 20-12-h and "r-30-h"; these 
pairs can be considered as possible representations of  the instantaneous 
dynamic shapes of nuclear shells. 

Now we invoke Leech's article (1957) once more and consider the 
equilibrium of two different kinds (sets) of particles on the same sphere, in 
our case of neutrons and protons, whatever the law of force may be between 
particles of  any one set and whatever else it may be between particles of 
the two sets. In such a case each set of particles must be in equilibrium by 
itself, that is, it must form an equilibrium polyhedron, and the relative 
orientation of the two equilibrium polyhedra must be such that the vertices 
of the one correspond to the middle of edges or to the center of faces of 
the other. As will become obvious in Section 2.4 assumption (b) leads to 
the center of faces. Thus, for a given neutron (proton) polyhedron the kind 
and orientation of the proton (neutron) polyhedron is fixed. These polyhedra 
are called reciprocal to each other (Appendix A), that is their axes of 
symmetry coincide; if, for example, an 8-h (or a 20-h) is a neutron poly- 
hedron, its reciprocal, the cube, (or the 12-h) stands for the proton 
polyhedron. 

We finally consider sets of particles, of one or two kinds, on different 
(two or more) spheres. It is obvious that in order for all the particles to be 
in equilibrium, each set on its sphere must be in equilibrium and also the 
sets on the different spheres must be in equilibrium with each other. Hence, 



588 Anagnostatos 

each configuration on its sphere must have a polyhedral form and the 
relative orientation among these polyhedra must be such that their common 
axes of symmetry coincide, which means that the vertices of each one 
correspond to center of faces of any of the others. Consequently, assumption 
(a )  almost by itself yields the possible instantaneous angular distributions 
of neutrons and protons in the IM. We should note at this point that any 
order of  succession of these polyhedra is acceptable up to this stage. This 
order, nevertheless, is restricted by virtue of assumption (/3), as we shall 
set out in Section 2.4. For more details on the relative orientation of the 
polyhedra employed by the model as presented in Figure 1 one can refer 
to Appendix B. 

2.4. The Radial Instantaneous Distribution of the Particles in the IM 

Since the possible instantaneous angular distributions of the nucleons 
have already been established, we proceed to derive the radial instantaneous 
distribution of the particles by taking into account assumption (/3). In other 
words, the size of each polyhedron takes its minimum value in such a way 
that the hard spheres representing the neutrons or protons of this polyhedron 
come in contact with those of the previous polyhedron in the angular 
distribution considered. In order to obtain the close packing of polyhedra 
it is clear that we must start with the polyhedron possessing the smallest 
number of particles (vertices). Therefore, we must start with the 0-h then 
with the 6-h and 8-h, the 12-h and 20-h, and so forth. Since we have two 
kinds of  particles which according to Leech (1957) occupy reciprocal 
polyhedra, one of the members of a reciprocal pair is assigned to neutrons 
and the other to protons. We found it workable in the model to start by 
assigning the neutrons to stable equilibrium polyhedra (i.e., 8-h, 20-h, etc.) 
and the protons to the unstable equilibrium polyhedra (i.e., 6-h, 12-h etc.) 
which acquire stability when considered together with their reciprocal (see 
Appendix A). After a very detailed and tedious examination of all 
possibilities we have arrived at the instantaneous dynamic forms of all 
nuclear shells and their close packing as shown in Figure 1, which demon- 
strates the sizes and the relative orientations among neutron polyhedra, 
among proton polyhedra, and among neutron and proton polyhedra. 

As one can see from Figure 1 the close packing of shells leads to the 
creation of  holes (denoted by h) in some polyhedra and to the analysis of 
some polyhedra into simpler ones (where possible). For an explanation of 
both one can consult Appendix E. 

The polyhedra standing for proton shells lie on the left of the heavy 
central vertical line in Figure 1, while those for neutrons are on the right 
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and in such a correspondence that next to a proton (neutron) polyhedron 
(in each of the levels of the figure which are labeled A-F for protons and 
a - f  for neutrons) one finds a neutron (proton) polyhedron having the same 
symmetry group (i.e., reciprocal in geometrical language). In levels D and 
E of Figure 1, the angular vertex distribution of  the proton or neutron 
rhombic triacontahedron (see inserts 1 and 2 in Figure 1) is analyzed into 
three simpler equilibrium polyhedra (standing for nuclear subshells). A 
somewhat more sophisticated analysis into polyhedral subshells is made 
for the last neutron shell (see Figures If  and lf'). In this case for a better 
visualization, we consider the centers of the triangular faces of the rhom- 
bicosidodecahedron which form an imaginary dodecahedron each vertex 
of which stands for a set of three vertices of the initial polyhedron. With 
these in mind, the polyhedra in Figures If  and lff can be visualized, for 
example, like those in Figures le and le'. Finally, for the polyhedra of 
Figure 1 we may say that if the similar polyhedra in levels D and E of the 
figure (and in inserts 1 and 2) are considered different, because of their 
different orientation, then all polyhedra in Figure 1 are different in the sense 
that their angular vertex distributions are different. 

At the top of  each block in Figure 1 the name of the polyhedron 
presented there is given, while at the bottom the number of succession of 
the subshell (having this polyhedron as its instantaneous dynamic average 
form) is shown inside a box with the prefix Z for protons and N for 
neutrons. Underneath this box, the number of vertices of  the polyhedron 
and the number of holes (h, if any) (whose difference is the number of 
nucleon most probable positions accommodated by this polyhedron) are 
given inside parentheses, while next to it inside brackets the cumulative 
number of nucleon most probable positions, accommodated by all previous 
polyhedra, is given. Finally, in each block, the size of  the sphere exscribed 
to this polyhedron is given in units of fermis. 

The information needed for the reproduction of all radial sizes of the 
nuclear shells, completely determined from the hard spheres of neutrons 
and protons and from the angular distribution of polyhedral vertices, is 
given in Appendices C and D. The calculation starts from the 6-h and 
proceeds step by step leading to the radii of the spheres exscribed to all 
polyhedra of Figure 1. 

It is apparent that the instantaneous dynamic structure of the IM is 
now metrically defined. Thus, the coordinates of  all nucleon most probable 
positions, involved in a particular closed shell nucleus, can be uniquely 
determined. For example, these coordinates for the doubly closed-shell 
nuclei 4He, 160, and 4~ are given in Footnote 14 of Anagnostatos and 
Panos (1982). 
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3. A P P L I C A T I O N S  OF T H E  IM 

3.1. Reproduction of Magic Numbers 

As one can see, the cumulative numbers in the brackets of  Figure 1 
reproduce all experimentally known magic numbers (we will comment  on 
the derivation of Z = 50 shortly). In addition, for protons the semimagic 
numbers at Z = 28 and 40 are reproduced, while for neutrons the numbers 
N = 58, 70, and 90 appear,  which are meaningful also. Specifically, N = 58 
and 70 correspond to closures of  subshells, according to the order of  levels 
following the single-particle shell model (Mayer  and Jensen, 1955), while 
N = 90 (even though not in this order) corresponds to a closure o f a  subshell, 
according to the experimental  data (Holden and Walker, 1972) (since after 
N = 82 the 2 f  7 states appear  (i.e., totally 8 neutrons) in the ground states 
of  odd N even Z nuclei). 

It is interesting to comment  that the number  Z = 52, instead of  Z = 50, 
results f rom the summation of  all proton most  probable positions up to 
Figure 1D". This fact, as will be explained in detail elsewhere, forms the 
starting point  for an explanation of  the rarely seen magic number  Z = 50 
in the low-energy fission products of  235U and in spallation procedures. The 
magic number  Z = 50 is here explained as follows. As one can see, there 
are two holes in the hexahedron of the Z2  which lie on the same rays with 
two holes of  the Z3 shell. This creates a favorable condition for the two 
protons in the Z4  (lying on the same rays) to shrink and thus to come in 
contact with the protons in Z1. Then, in the thus-created holes in Z4,  two 
additional protons could be accommodated and thus the cumulative proton 
number  Z = 42 could appear.  I f  now eight additional protons forming a 
cube are considered, the magic number  Z = 50 appears. When additional 
protons are added, however, this structure does not remain as a core, but 
instead changes into that of  Figure 1D" with cumulative proton number  
Z = 5 2 .  

3.2. Radii and Densities 

In Table I the results of  nuclear size and density calculations (of 
closed-shell nuclei from 4He to 2~ solely based on the radial size informa- 
tion given in Figure 1) are presented. Specifically, the charge, neutron, 
proton, and neut ron-proton  root mean square radii (i.e., \,/~2\1/2/oh, (r2)~/2, 

_2\  1/2 ~2\  I / 2  / 2 \  1/2 ( r / p  , and ( , / ,  - ~ r / p  , the average nuclear densities, and the radial 
parameter  ro of  all closed-shell nuclei listed in the first column are given 
together with experimental  or adopted values (de Jager et al., 1974; Engfer 
et al., 1974; Stock, 1976; Alkhazov et al., 1976; Pyle and Greenless, 1969; 
Greenless et al., 1970; Bernstein and Seidler, 1972; Jackson, 1976; Hornyak,  
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5 9 2  A n a g n o s t a t o s  

1975) for comparison. For comparison with theoretical predictions, other 
than those included in the table and discussed later, see Hodgson (1980) 
and references therein. For the calculations involved, the definition of  each 
quantity as given below is used: 

r2\ 1/2 
* I c h  - -  

z 
2 r ~ q - Z ( 0 - 8 )  2 -  N(0.34) 2- 

i=1 

Z 

J/2 

(2) 

/ N \~/2 / z \1/2 

2,,1/2 /~2\1/2__ A ~  _ _ | i = l  | <" '" -'" - 

A 
d= 

(4/31~'R3q 

Req = (5/3)~/2(r2)'/2 

[ ~  r~+Z(O'860)2+g(0"974)2] 1/2 
/_2\1/2 _ i=l 
x t / m a s s -  

(3) 

(4) 

and 

r o = [(47r/3)d] -1/3 (5) 

where Z, N, and A are the proton, neutron, and mass numbers, respectively; 
0.8 fm (-0.116 fm 2) stands for the charge rms radius (ms) of a proton 
(Engfer et al., 1974) (neutron);  0.860 fm (0.974 fm) stands for the mass rms 
radius of a proton (neutron), according to the isomorphic model [assump- 
tion (b)]; and ri stands for the distance of  the ith neutron or proton center 
from the nuclear center, as given by the relevant R value in Figure 1. 

As is obvious from Table I the comparisons of  the model predictions 
with the experimental or adopted values (where available) are very satisfac- 
tory. Specifially, the model charge rms radii are either within the ranges 
defined by the experimental errors, or when out of  it, no more than 
3 (10 -2) fm. This accuracy is very good, particularly because, first, no adjust- 
able parameters are used in the calculations and, second, everything in 
Table I comes uniquely from a structural rule (followed consistently from 
4He to Z~ and from the definitions of the estimated quantities. As for 
the neutron-proton rms radial differences there is insufficient information 
in the literature. Specifically, data for some nuclei in Table I are missing 
and where available they come from different sources and methods. As is 
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known, different methods applied to the same nucleus may give substantially 
different results. In general, the experimental knowledge of neutron distribu- 
tion is very vague and has been marked by some confusion and controversy. 
It depends rather strongly on the choice of the nucleon-nucleon interaction 
and of other strongly interacting projectiles during scattering and reaction 
procedures (Jackson, 1976). The way of deriving the neutron distribution 
here, however, lends support to our predictions, since both proton and 
neutron distributions are interconnected and both come from the same 
structural role of close packing of reciprocal equilibrium polyhedral shells, 
as illustrated in Figure 1. Thus, it is reasonable to believe that the neutron 
distribution is as reliable as the proton distribution, when the latter fits the 
experimental data for the radii and Coulomb energies (Anagnostatos and 
Panos, 1982) very well. 

A very interesting feature of our results is that the Nolen-Schiffer effect 
(Nolen and Schiffer, 1969) for calcium isotopes (i.e., the charge radius of 
48Ca is smaller than that of 4~ is well reproduced. This is a consequence 
of equation (2), which includes the effect of neutron charge density (Bertozzi 
et al., 1972). Also, our Ar,, values and their change of sign for these two 
calcium isotopes are very well justified by the experimental data, while 
these values and the Nolen-Schiffer effect are in apparent conflict with 
Hartree-Fock predictions. 

The average values of density and of radial parameter ro for all nine 
nuclei of Table I, i.e., dA = 0.111 nucleons/fm 3 and ~o = 1.29 fm, compare 
very well with the adopted values dA = 0.113 nucleons/(fm 3) and ro = 1.25 fm 
for all nuclides, when a trapezoidal-density function is assumed (Hornyak, 
1975). 

Since for each closed-shell nucleus all previous closed shells coexist 
as a core (in the isomorphic model), the derived densities in Table I 
constitute an approximation (for pointlike nucleons) of the radial depen- 
dence of density. The deviations from their average value remind one of 
the experimentally and theoretically known waving radial fluctuations of 
density (Negele, 1976). The rather significant decrease of density after 9~ 
resembles the decrease in binding energy per particle as a function of A 
for this mass region (Kaplan, 1962). That is, our decrease in density gives 
an explanation of the decrease in binding energy, in cooperation with the 
increase of Coulomb energy as Z increases, and offers an additional support 
for our calculations. Of course, this decrease in density comes almost 
exclusively from the size of our N9 radius (see Figure lff), which leads to 
Ar, v for 2~ (see Table I) higher than any available experimental informa- 
tion. This significant neutron halo (neutron skin) in Pb is very difficult to 
detect accurately, being very sensitive to the particular projectile employed 
(Rebel, 1976). 
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3.3. Coulomb, Kinetic, and Binding Energies 

For this section 160 and 4~  a r e  taken as examples. The quantities 
involved have already been published in the references cited but are also 
given here for reasons of completness. 

Despite the fact that the nucleons in the IM are in constant motion, 
all quantities are computed considering the nucleons in their most probable 
positions shown in Figure 1. Of course, these positions refer to a particular 
instant in time, but they presumably give the average values. 

An estimation of the Coulomb energy, Ec, for each closed-shell nucleus 
can be determined by applying the Coulomb potential to all pairs of proton 
most probable positions (Figure 1). Such Ec values (considered as average 
values) for 160 and 4~ are taken from Anagnostatos and Panos (1982) 
and are listed in Table II. 

The average kinetic energy per nucleon, (T), can be determined as the 
sum of the part of the kinetic energy due to the confinement of the nucleons 
in the nuclear volume and of the part of  the kinetic energy due to the 
rotation of  nucleons (Svenne, 1980). Values of A(T)  (A denoting number 
of nucleons) that are listed in Table II are taken from Panos and Anagnos- 
tatos (1982a, b) and (as explained there) have been computed using, as for 
the Coulomb energies, the same nucleon most probable positions (Figure 1). 

For the determination of binding energies, BE, we use the formula 
BE = Y, V~ - Ec - A(T)  (6) 

all nucleon 
pairs 

Table 1I. Coulomb, Kinetic, and Bind Energies, in Units of  MeV, for 160 and 4~ 

Separation Energies 
Nuclei E c A(T)  ~ V~j BE neutrons protons 

160 12.4 a 126 r 255.1 e 116.7 1sl/2 62.41 40.01 
(10.7-12.5) 6 (131) d (127.6) f lp 3/2 17.63 14.13 

64.8 324 757.1 368 lp ~/2 13.73 8.53 
4~ (61.1-71.2) (362) (342.1) 

~According to the second term on the right-hand side of equation (6). 
eAccording to the formula E c ~ (e2/Rz)IO.6Z(Z-1)-0 .46Z4/3] ,  where R = (1.3+0.1)A ~/3, 
from Hill (1957). 

CSee Panos and Anagnostatos (1982a, b). 
aAccording to the single-particle sum rule in Svenne (1980) and Panos and Anagnostatos 
(1982a, b). 

~See Anagnostatos and Panos (1982). 
fSee Wapstra and Gove (1971). 
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An estimation of the potential energy, Y~ V~, for each closed-shell nucleus 
can be obtained by employing the two-body potential of Figure 2 for all 
pairs of nucleon most probable positions (Figure 1). Such Y~ V~ i values 
(considered also as the average values) for our sample nuclei are taken 
again from Anagnostatos and Panos (1982) and are also listed in Table II. 
Next to them the corresponding BE are given. As one can see from Table 
II the quantities Ec, A(T), and BE are in very good agreement with 
experimental values listed also in the table. It is important that all the above 
quantities are calculated without any adjustable parameters. More details 
concerning the determination of BE will be given elsewhere. 

These energy predictions are a very sensitive check of the average gross 
structure of these nuclei proposed by the isomorphic model. A similar check 
is underway for the heavier closed-shell nuclei and will be critical for a 
check of the dimensions of the last neutron shell, which is responsible for 
the rather large Arnp, and thus rather small nuclear density, in 2~ 

4. COMPARISON BETWEEN THE PREDICTIONS OF THE 
IS OMOR P HIC MODEL AND THOSE OF OTHER NUCLEAR 
STRUCTURE MODELS 

-4.1.  Spherical Shel l  Model  

4.1.1. Magic Numbers 

It is worth noticing that in the explanation of magic numbers given 
herein lies a main difference between the isomorphic model and the shell 
model: In the shell model the reproduction of the magic numbers follows 
only if we introduce empirically a spin-orbit term in the effective interaction 
and, moreover, if we more or less artificially "bunch"  the nucleon numbers 
to generate shells and subshells, which we call "closed" so as to get the 
experimentally known magic numbers. Specifically, while the evidence for 
spin-orbit coupling introduced by the shell model is convincing, it is difficult, 
to understand (on the basis of the arguments usually employed) why the 
magic numbers should be outstanding among the many more numbers 
corresponding to the completion of spin-orbit sub-subshells (Pauling, 
1965b). 

In contradiction, the explanation of magic numbers given by the isomor- 
phic model follows a natural way. Thus, incorporating into the conventional 
shell model the concept of a nuclear shell introduced by the isomorphic 
model, one could conclude that nuclear shell structure is more general than 
the independent-particle basis upon which it currently rests. Specifically, 
the abstract concept of a shell, introduced by the shell model, in the 
framework of the isomorphic model is shown to lead to nuclear shells with 
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real shapes when one considers the most probable position of each nucleon 
instead of its innumerable intantaneous positions in orbital. 

4.1.2. Radii and Densities 

In Table I the results of nuclear radii, according to the spherical shell 
model (SSM) calculations, are given for comparison with those of  the 
isomorphic model (IM). In particular, the single particle potential (SPP) 
method was applied in which each nucleon is moving independently in a 
one-body potential, and the proton and neutron density distributions are 
then obtained by summing their probability distributions, weighted by the 
occupation numbers of each orbit (Hodgson, t981). As one-body potential 
the following was used: 

[ h \2V~o - h2L(L+I) 
Vj(r)=-VNf(r)-~-m-s ) ~o(L'o')jg(r)+ZAZ~e2h(r) -+ 2/,r  2 

where 

g(r) 

f(r)=[ l+exp(r-RNll-''', aN ,'a 
{r-R&[ {r-R&] -2 

e x p / - - / / 1  + expt--a--7--o ] J 
\ aso / k  

h(r) =-1 for r>~ R~ 
r 

( r2) 1 3 - R-7~ for r < R c  -2s 
VN is the central nuclear potential; Vso is the spin-orbit  nuclear potential; 
and 

( / 7 . 8 ) j  = L for J = L +  1/2 

= - ( L +  1) f o r J = L - l / 2  

rx, ax are the radius and diffuseness parameters of the xth part of the 
potential and Rx = r,,A1/3; A, Za are the core mass and its charge; /x, Z~ 
are the particle reduced mass and its charge. 

In general, all the details of the method applied are included in the 
Oxford Computer  Density Code made available to us by the Oxford Nuclear 
Physics Theoretical Group. 

The agreement between the results of  the two models is quite good, as 
can be seen from Table I. While there are obvious differences in the results, 
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overall, the two models give predictions that are quite well comparable to 
the experimental data, as seen from the table. 

Since the nucleon distribution in the isomorphic model (as shown in 
Figure l) corresponds to the momentary dynamic distribution of nucleon 
most probable positions, the density derived from it (see Table I) is just 
the average density. Thus, it is very interesting to examine how this distribu- 
tion compares not only to the average value but also to the radial nuclear 
density, derived according to the spherical shell model. For this effort we 
have again used the Oxford Code. First, taking 160 as an example, as 
single-particle separation energies we have taken the energies derived from 
the model when the two-body nuclear potential of Anagnostatos and Panos 
(1982) (see also Figure 2) was applied among all pairs of nucleons in the 
isomorphic nucleon distribution [Figure 1 ; see also footnote 14 of Anagnos- 
tatos and Panos (1982) for the nucleon coordinates], and the corresponding 
kinetic energies were subtracted (Table II). For these energies;we have 
determined from the Code the depths VN and Vso of the one-body potential 
in equation (7) for each state, and the corresponding single-particle wave 
functions. The radial charge and matter densities derived by the Code using 
these wave functions are shown in Figure 3, together with the charge density 

Fig. 3. Radial density distributions of 160. Part (a) 
represents the experimental  upper and lower limits. Part 
(b) shows the theoretical predictions for the change 
density; solid curve for Brown et al. (1979), dots for this 
work. Part (c) shows the matter density according to the 
present work. 
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derived by "pure" shell model calculations from Brown et al. (1979). The 
agreement between the predictions of the two models is apparent and both 
compare equally well with the experimental curve. For matter distribution 
no experimental or theoretical densities were available. 

4.1.3. Quadrupole Moments 

The momentary dynamic proton distributions in the model obviously 
have a spherical symmetry, which leads to, as desired, electric quadrupole 
moments for the closed shell nuclei, Q = 0. Further, it is very interesting to 
recall, for example, Anagnostatos (1973, 1977) and Anagnostatos et al. 
(1980), where the quadrupole moments for all open-shell nuclei in the s-d 
shell are very successfully predicted, when the following assumption is 
made. The valence protons, that is the protons in addition to the complete 
core of 160 (where the polyhedral shells Z1 and Z2 are complete in Figure 
1), occupy vertices of the next proton polyhedral shell (Z3). This success 
constitutes a very sensitive test for the distribution of the proton most 
probable positions in the model. Also, we should mention that the previous 
assumption about the filling of a shell in the IM resembles very well the 
way the simple shell model arranges its valence particles into unoccupied 
levels. 

4.1.4. ~ g, f and f j  Quantization of Direction 

While this section clearly belongs to the semiclassical part of the model, 
which is not the subject matter of the present work, it is very interesting to 
recall from Anagnostatos (1978; 1980a, b) Anagnostatos et al. (1981) and 
de Boer and Mang (1973) that the symmetries of the regular and quasiregular 
polyhedra employed in the IM to represent equilibrium dynamic forms of 
nuclear shells are consistent, in the level of identity with the symmetries of 
quantization of direction for the orbital, intrinsic and total angular momenta, 
and their projection on the quantization axis. Also, they are consistent with 
j-j-coupling and its projection, with a symmetry description of the Indepen- 
dent Particle Model, and with rotational invariance of orbital-angular- 
momentum quantization of direction for degenerate states. 

Thus, an equilibrium polyhedron employed in the IM may represent 
the average motion patterns of the nucleons which this polyhedron 
accommodates in the model. In general, the angular study of equilibrium 
(isomorphic) polyhedra may help the development of a fundamental theory 
of the atomic nucleus, just as the study of regular linear arrays of identical 
atomic groups led towards the complete theory of crystal structure. 
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4.1.5. Hartree- Fock Approach 

As one can see from Table 2 Panos and Anagnostatos (1982a, b) (where 
the single-particle sum rule average kinetic energy per particle for a selection 
of self-consistent field calculations for 160 is given), the kinetic energy from 
the isomorphic model satisfies the single particle sum rule very well, while 
the Hartree-Fock (HF) and Bruckner-Hartree-Fock (BHF) methods do 
not. The IM gives equivalent results with those coming from renormalized 
BHF and from density-dependent HF approaches (Svenne, 1980). 

4.2. Collective Models 

4.2.1. Saturation 

The saturation property, that is, the fact that both average density and 
average binding energy per particle are approximately the same for all but 
the lightest nuclei, is an essential property in nuclear structure physics. It 
is of major importance that about constant average density results directly 
from our two assumptions (see Table I) and that the application of the 
two-body potential of Anagnostatos and Panos (1982) (Figure 2) leads to 
almost constant average binding energy per particle (Table II). Thus, while 
the model starts as an independent particle model, it comes out to incorpo- 
rate features of the liquid drop model. 

4.2.2. Collective Rotations 

In Anagnostatos (1973; 1977) and Anagnostatos et al. (1980), using a 
method based on our closed-shell treatment, we have used the model, in 
combination with predicted ground state moment of inertia, Jo, values from 
the variable moment of inertia (VMI) model (Mariscotti et al., 1969), to 
estimate the specific rotating and nonrotating part in a rotating nucleus. 
The model predicts that in a rotating nucleus, in general, only a part of the 
mass rotates and thus contributes to its Jo. Specifically, through the 78 nuclei 
examined we have found that this mass is not arbitrary but is related to the 
shell structure of the nucleus (Trainor and Gupta, 1971). Namely, this 
rotating mass consists either of the mass of nucleons of the incomplete 
shells alone, or of the mass of the incomplete shells plus the mass of an 
integral number of deformed closed shells in successive order for outermost 
to innermost. 

4.2.3. Giant Resonances 

Collective time-dependent relative neutron to proton movements, as 
in giant resonances (Bertsch, 1983), are very well qualitatively understood 



600 Anagnostatos 

in the model, where neutrons and protons form different shells. Particularly, 
the monopole (breathing) and quadrupole modes of vibrations are favored 
by the isomorphic nuclear shell structure. The small percent of nucleons 
participating in quadrupole vibration could be associated with the nucleons 
of a polyhedral shell. 

4.3. Quark Model of  Nucleons 

It is tempting to relate the radii of the proton (0.860 fro) and neutron 
(0.974 fm) "hard" spheres as required in the .isomorphic model with the 
radii of the MIT nucleon cloudy bags. Recently (Th~b~rge and Thomas, 
1983), these bags range between 0.8 and 1.1 fm, while another recent study 
(Thomas, 1983) estimates the bag radius to be 0.87 ~= 0.10 fro. Furthermore, 
in the IM the radius of the neutron bag is 13% larger than that of the 
proton bag, which agrees very well with a finding (Celenza and Shakin, 
1983) that in the quark model the confinement radius for a neutron is about 
10% larger than for a proton. This agreement, seemingly not accidental, 
indicates that in the IM of nuclear ground states we may see some nucleon 
confinement spheres of radii similar to those found in quark models of 
nucleons. 

5. SUMMARY AND CONCLUSIONS 

In the classical part of the isomorphic model presented in this paper 
a rather simple structural rule is underlined, where nuclear shells with 
instantaneous dynamic average forms represented by reciprocal equilibrium 
polyhedra (whose vertices stand for nucleon most probable position and 
are occupied by hard spheres of definite sizes) are packed in the closest 
way. From this part alone the experimentally known magic numbers are 
reproduced in a unique way. Charge, neutron, proton (and their difference) 
rms radii, average and radial nuclear densities, Coulomb energies, kinetic 
and binding energies of closed-shell nuclei are also derived in very good 
agreement with experimental data and using no adjustable parameters, even 
though some more work seems necessary for a check of the sizes of the 
heavier shells. In Section 4 of this paper a first comparison of the IM with 
other nuclear structure models (that is, the spherical shell model, collective 
models, apd the quark model of nucleons) shows that while the model starts 
with the nuclear shells, i.e., in the lines of the independent particle model, 
it finally leads to sizes, densities, Coulomb and binding energies consistent 
with the liquid drop model, using sizes of nucleons consistent with the 
quark model of nucleons. Specifically, it can be argued that our assumption 
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(a) is along the lines of the independent particle model, while our assumption 
(b) links the isomorphic model to the liquid drop and quark models. 

Finally, we would like to stress once more that the IM should not  be 
seen as a competitor to any of the existing nuclear structure models but 
rather as a link among them. There is not a real difference in physics between 
the IM and the other models but rather differences in the approaches 
employed. Further work on the IM may prove very useful by contributing 
a great deal to the formation of a "picture" of the nucleus which can unite 
the available information about nuclei into a consistent body of knowledge. 
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A P P E N D I X  A:  CLASSIFICATION OF EQUILIBRIUM 
P O L Y H E D R A  

In this appendix we discuss all ten different equilibrium polyhedra 
which are illustrated in Figure 4, rows 1 and 2, along with their names and 
their symbolic abbreviations. Some important classifications of these poly- 
hedra are as follows: 

(i) All ten polyhedra are divided into two sets according to their 
regularity. The tetrahedron, hexahedron, octahedron, dodecahedron, and 
icosahedron comprise all the Platonic (regular) polyhedra. The zerohedron 
is considered as the degeneration of a regular polyhedron to zero dimensions. 
The remaining four semiregular polyhedra, namely, the rhombic dodecahe- 
dron, cuboctahedron, rhombic triacontahedron, and icosidodecahedron, 
may be derived from the Platonic polyhedra in the following ways. When 
we consider a hexahedron and an octahedron with mutually bisecting edges 
(Figure 4, row 3, column 3), then their vertices taken together are the vertices 
of a rhombic dodecahedron, and their common volume has the shape of a 
cuboctahedron. Similarly, when we consider an icosahedron and a 
dodecahedron with mutually bisecting edges (row 3, column 5), then their 
vertices taken together are the vertices of the rhombic triacontahedron and 
their common volume has the shape of an icosidodecahedron. 
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The hexahedron, octahedron, cuboctahedron, rhombic dodecahedron, 
and the dodecahedron, icosahedron, icosidodecahedron, rhombic triacon- 
tahedron, belong to the cubic-octahedral and the icosahedral-dodecahedral 
symmetry group, respectively. 

(ii) All ten polyhedra of Figure 4, rows 1 and 2, can be divided into 
pairs of reciprocal polyhedra (Coxeter, 1963). In short, two polyhedra are 
reciprocal (dual) when the radii passing through the vertices of one, cross 
the faces of the other perpendicularly at their centers (Coexter, 1963, p. 
17). Accordingly, as shown in column 1 of Figure 4, the zerohedron has 
another zerohedron as its reciprocal, i.e., it is self-reciprocal. Likewise, the 
tetrahedron is self-reciprocal. In addition the following pairs of polyhedra 
appropriately oriented, are reciprocal: the octahedron and hexahedron, the 
cuboctahedron and rhombic dodecahedron, the icosahedron and dodeca- 
hedron, and the icosidodecahedron and rhombic triacontahedron. Each 
column in Figure 4 contains one of these reciprocal pairs, first (rows 1 and 
2) with the members shown separately, and then (row 3) superposed in the 
appropriate manner. 

(iii) All ten polyhedra can be divided into two sets according to their 
stability, i.e., stable or unstable equilibrium of particles considered at their 
vertices. Stable equilibrium in geometrical language means that the distance 
between any two neighboring particles (least distance) must be the maximum 
possible. Thus the zerohedron, tetrahedron, octahedron, icosahedron, and 
icosidodecahedron satisfy this condition. The remaining polyhedra do not 
fulfill this condition. For example, while eight particles on a sphere are at 
equilibrium at the vertices of a cube, they do not  have a maximum least 
distance; this least distance becomes maximum when the 8 particles are 
arranged at the vertices of a square antiprism which, of course, is no t  an" 
equilibrium polyhedron. 

(iv) All ten polyhedra can be divided into two sets according to their 
central symmetry. Only the tetrahedron does not possess this symmetry, 
since the central reflection of a vertex of the tetrahedron does not correspond 
to another vertex of this polyhedron. 

(v) All ten polyhedra can be divided into two sets, according to whether 
the number of nearest neighbors of each particle (vertex) is the same or 
not. From the polyhedra of Figure 4 only the rhombic dodecahedron and 
the rhombic triacontahedron have two categories of vertices A and B. 
Specifically, in the rhombic dodecahedron each vertex A has four neighbor 
vertices and each vertex B three neighbor vertices, while in the rhombic 
triacontahedron each vertex A has three neighbor vertices and each vertex 
B five neighbor vertices. 

Table III describes all the metrical relationships of the regular poly- 
hedra and comes from Coxeter (1963), p. 292. 
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A P P E N D I X  B:  RELATIVE ORIENTATIONS OF E Q U I L I B R I U M  
P O L Y H E D R A L  SHELLS 

This appendix describes in detail the relative orientation of all poly- 
hedra employed by the isomorphic model, as shown in Figure 1. 

The neutron zerohedron ( N  1) is the first neutron polyhedron involved 
in the isomorphic nuclear structure. Its two spheres representing its two 
neutrons are in contact, as assumption (b) requires. Their point of  contact 
defines the nuclear center, which is the center of  symmetry as well, and the 
straight line through their centers defines an axes of  symmetry. The first 
proton polyhedron (the zerohedron Z1) has the same center of  symmetry 
as N1, but its two spheres representing its two protons cannot be in contact 
with each other) since then the spheres of  the two protons and of the two 
neutrons would overlap one another, which is not possible since the spheres 
are assumed "hard") ,  and their separation distance is defined by the contact 
of each proton sphere with the neutron spheres of N I .  The straight line 
through the centers of the two proton spheres defines another axis of  
symmetry. This axis of Z1 and the previous axis of  N1 are perpendicular 
and common axes of  symmetry of both N 1 and Z1,  and cross each other 
at the common center of  symmetry, the nuclear center. 

The next smallest polyhedra involved in the isomorphic nuclear struc- 
ture are the octahedron N2  and the hexahedron Z 1. Their orientation with 
respect to N1 and Z1 and between themselves is such that the n - n  and 
p - p  axes of  symmetry of  N1 and Z1 become C2 and C3 axes, respectively, 
of  both the N2  and Z2. It is interesting for one to notice that in this 
orientation N2  and Z2  have all their C2, C3, and C4 symmetry axes 
common,  i.e., they have a common rotational group, or they are reciprocal 
in geometrical  language. 

Next in the isomorphic structure come the polyhedra with larger num- 
bers of vertices, i.e,, the icosahedron (N3)  and the dodecahedron (Z3). 
Their orientation to all four previous polyhedra and between themselves is 
in such a way that all C3 axes of N2 and Z2  are C3 axes of  both N3 and 
Z3 and in addition all C4 axes of  N2 and Z2  are C2 axes of  both N3 
and Z3. At the same time, all C2, C3, and C5 symmetry axes of  N3 and 
Z3 are common,  i.e., these two polyhedra constitute a reciprocal polyhedral 
pair. 

Finally, the largest equilibrium polyhedra are considered, i.e., the 
icosidodecahedron (N4)  and the rhombic tr iancontahedcron (insert 1). The 
rotational group of each of these two polyhedra is the icosahedral-  
dodecahedral  group, i.e., these two polyhedra are reciprocal. Thus, their 
orientation to each other is such that their symmetry axes coincide and, at 
the same time, all these axes coincide with all symmetry axes of N3 and 
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Z3. In Figure 1 this rhombic triancontahedron for close packing require- 
ments is analyzed into three polyhedra (Z4, Z5,  Z6)  having the same 
angular distribution as the rhombic tr iancontahedron itself. Similarly, we 
have an analysis of the rhombic triacontahedron of insert 2 into the poly- 
hedra N5, N6, and N7. These polyhedra and the Z7 differ from the previous 
polyhedra Z4,  Z5, Z6,  and N4  only in orientation and have the same 
relationship as the previous polyhedra to the symmetry axes of  N2 and Z2 
(see above). In order for one to conceptualize the difference in orientation 
between the two rhombic triancontahedra (inserts I and 2), it is enough to 
observe that each of these two polyhedra or any of their component poly- 
hedra as shown in Figure 1) results from the other (with the same name) 
via a rotation of 90 ~ around any C4 axis of the hexahedron which is a 
common member polyhedron to both of  them. (More details on the analysis 
of polyhedra into simpler ones are given in Appendix E.) 

The orientation of  N9 can easily be visualized, if one considers the 
centers of  its triangular faces (instead of the faces themselves) which form 
a dodecahedron. This imaginary dodecahedron has an identical orientation 
to that of  N6. Furthermore, if one wants to comprehend in more details 
the relationship of N9 to the regular polyhedra, he should consider the 
crossing points of  an icosahedron and its reciprocal rhombic triancontahe- 
dron (as shown in Figure 4, column 6, row 3) which form a rhom-" 
bicosidodecahedron as the N9. 

A PPENDIX C: RADIAL SIZES OF EQUILIBRIUM P O L Y H E D R A  
SHELLS 

The radial size of each polyhedral shell (Rx) is determined solely from 
the knowledge of the radial size of the previous contacting polyhedral shell 
(R), from the minimum nucleon-nucleon separation distance of  these two 
shells, and from a characteristic angle (a )  depending on the kind of  
polyhedra in contact and their relative orientation. 

For this purpose we employ Figure 5, which shows for each polyhedral 
shell a nucleon sphere labelled with the notation of  this polyhedron accord- 
ing to Figure 1. All nucleon spheres presented in the figure are in contact 
and are shown in the correct radial and angular relationships to each other 
in agreement with the relative orientations and sizes of  polyhedral shells 
as shown in Figure 1. 

Take now, for example, the triangle 0 (Z4) (N4)  which is shown in 
Figure 5 and is defined by the nuclear center (0) and the centers of the 
nucleon spheres labeled Z4  and V4. Then, from the law of cosine we have 

d 2 = R~+ R 2 - 2 R x R  cos a (C.1) 
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Fig. 5. Close packing of equilibrium polyhe- 
dral shells. Each polyhedral shell is represen- 
ted by one of its nucleon spheres labeled with 
the notation of this polyhedron according to 
Figure 1. The representative nucleon spheres 
are in contact and are shown in the correct 
radial and angular relationships to each other 
in agreement with the relative orientations 
and sizes of polyhedral shells, as shown in 
Figure 1. The triangle 0(Z4)(N4) shown is a 
typical one used in the analysis for the radial 
determination of the momentary dynamic 
average forms of nuclear shells from 4He to 
2~ Through this figure one can visualize 
the order in which the different polyhedral 
shells are in contact. This order corresponds 
to the closest packing possible of the specific 
polyhedral shells presented. Such close pack- 
ing results in the smallest polyhedral shell 
radii, given that the kind of polyhedron 
employed in the model are already specified 
by assumption (a). 

x 

~,5~ 

f r o m  w h i c h  we  ge t  

w h e r e  

o r  

o r  

R~ = R cos  ~ + ( d 2 -  R2 s i n  20~) 1 / 2  (c.2) 

d = dNi~j = 2 r ,  = 2 (0 .974)  = 1.948 f m  

d = dz i z j  = 2rp = 2(0 .860)  = 1.720 f m  (c.3) 

d = dNizj  = dz~Nj = r ,  + rp = 1.834 f m  

F o r  t h e  p a r t i c u l a r  e x a m p l e  w e  h a v e  c o n s i d e r e d ,  w e  h a v e  f r o m  T a b l e  IV  

( r o w  10, c o l u m n s  2, 3, a n d  4) 

R = R z 4  = 4.261 f m  

d = d Z 4 , N  4 = 1.834 f m  

a n d  

= 20 ~ 54'  19" 



608 Anagnostatos 

Table IV. Radial Size Determination of Equilibrium Polyhedral Shells 

Polyhedra 
in contact c~ a 
according R d according to according a to R x 

to Figure 5 (fro) (fro) Figure 5 Table III (fro) 

N1 0.974 0 (NI)  0 ( N I ) = 0  ~ RN~=O(N1)=G 
= 0.974 

N1, Z1 0.974 1.834 (Z1) 0 (N1) =90 ~ Rzl = 1.554 
N1, N2 0.974 1.948 (N2) 0 (N1) =45 ~ q58 RN2=2.511 
N1, Z2 0.974 1.834 (Z2) O(N1)=35~ 4~6 Rz2 = 2-541 
N2, N3 2.511 1.948 (N3) O(N2)=31~ 0520 RN3 = 3.568 
N2, Z3 2.511 1.834 (Z3) O(N2)=20~ " 05~2 Rzs = 3.946 
Z2, Z4 2.541 1.720 (Z4) 0 (Z2) =0 ~ Rz4 = 4.261 
N3, Z5 3.568 1.834 (Z5) 0 (N3) =0 ~ Rz5 = 5.402 
Z3, Z6 3.946 1.720 (Z6) 0 ( Z 3 )  = 0 Rz6 = 5.666 
Z4, N4 4.261 1.834 (N4) 0 (Z4) = 20 ~ 54' 19" qbte RN4 = 5.006 
Z4, N5 4.261 1.834 (N5) 0 (Z4) =0 ~ RN5 = 6.095 
Z5, N6 5.402 1.834 (N6) 0 (Z5) = 10048'44 " 0520- 0512 RN6 =6.835 
Z6, N7 5.666 1.834 (N7) 0 (Z6)= 10~ " 05z0-0512 RN7 =7-060 
N4, Z7 5.006 1.834 (Z7) 0 (N4) =0 ~ Rz7 = 6.840 

N5, N8 6.095 1.948 (N8) 0 (N5) =0 ~ RN8 = 8.043 
N6, N9 6.835 1.948 (N9) 0 (N6) = 10~ 48'44 " 0520-0512 RN9 = 8.180 

a05i(~6.8.12,20 ) denotes the angle & of the polyhedron with number of faces equal to i[= 6(hexa- 
hedron), 8 (octahedron), 12 (dodecahedron), and 20 (icosahedron)], according to Table III. 

H e n c e ,  f r o m  e q u a t i o n  (C.2)  

Rx = RN4 = (4.261) COS(20 ~ 54' 19") 

+ [ ( 1 . 8 3 4 )  2 -  (4.261) 2 sin2(20 ~ 54' 19")] 1/2 = 5.006 fm  (C.4)  

(see r o w  10, c o l u m n  6 o f  T a b l e  IV). In  o r d e r  n o w  fo r  o n e  to c o n s t r u c t  T a b l e  

IV, he  s tar ts  f r o m  the  first row,  w h e r e  al l  i t ems  are  k n o w n ,  a n d  p r o c e e d s  

r o w  by  row.  Spec i f i ca l ly ,  c o l u m n  1 i n c l u d e s  the  n o t a t i o n s  o f  pa i rs  o f  

p o l y h e d r a  in qon t ac t  ( a c c o r d i n g  to F i g u r e  5), the  first o f  t h e m  h a v i n g  a 

k n o w n  r a d i a l  s ize [ w h i c h  is l i s ted  in a p r e v i o u s  r o w  o f  the  t ab le  ( c o l u m n  

6) a n d  r e p e a t e d  in c o l u m n  2 ( s a m e  row) ]  a n d  the  s e c o n d  b e i n g  the  p o l y h e -  

d r o n  w h o s e  r ad i a l  size is u n d e r  d e t e r m i n a t i o n .  C o l u m n  3 i n c l u d e s  v a l u e s  

f r o m  e q u a t i o n  (C.3) ,  t he  spec i f i c  v a l u e  fo r  a p a r t i c u l a r  r o w  d e p e n d i n g  on  

the  p o l y h e d r a  o f  c o l u m n  1 in th is  row,  i.e., i f  b o t h  are  n e u t r o n ,  o r  b o t h  a re  

p r o t o n ,  o r  t he  o n e  n e u t r o n  a n d  the  o t h e r  p r o t o n  p o l y h e d r a .  C o l u m n s  4 a n d  
5 i n c l u d e  the  va lues  o f  the  c h a r a c t e r i s t i c  a n g l e  c~, w h e r e  in t he  f o r m e r  

c o l u m n  this  a n g l e  is spec i f i ed  us ing  F i g u r e  5 a n d  its n u m e r i c a l  v a l u e  is 
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given, while in the latter column the same angle using notations of charac- 
teristic regular polyhedra angles from Table III is given. 

APPENDIX D: SAMPLE CALCULATIONS 

In this appendix we give all sample calculations necessary for a com- 
plete understanding of the numerical predictions of the classical part of the 
isomorphic model for closed-shell nuclei as listed in Table I. We take 4~ 
as an example, where three shells for protons (Z1, Z2, and Z3) and three 
shells for neutrons (N1,  N2, and N3) are involved, with numbers of  
nucleons 2, 6, and 12, respectively, both for protons (Z) and for neutrons 
(N)  and with radii (fm) 1.554, 2.541, 3.946, 0.974, 2.511, and 3.568, respec- 
tively (see the first three levels of Figure 1, viz., Figures 1 A-1 C, 1 a-c. Charge 
root mean square radius [equation (2)]: 

( 2 \ 1 / 2 4 O C a  = [2(1.554)2+6(2.541) 2+ 12(3.946) 2+ 20(0.8)2-20(0.34) 2] 
"/oh 20 

= 3.47 fm (D.1) 

Neutron-proton root mean square radial difference [equation (3)]: 

(r2) ln/2 -- (r2} lp/2 -~ Amp 4 ~  

= [ 2(0.974) 2 + 6(2.511) 2 + 12(3.568) 2 ] ,/2 

t. j 
- [  2(1"554)2+6(2"54120 )2+ 12(3.946)2] 1/2 

= -0.29 fm 

Average nuclear density [equation (4)]: 

.2,1/2 _ [ 2 (1 .554)  2 + 6(2.541)2 + 12(3 .946)  2 + 2(0.974) 2 
! / m a s s -  40 

6(2.511 )2 + 12(3.568) 2 + 20(0.860) 2 + 20(0.974) 2] ,/2 
J 40 

= 3.38 fm 
1/2 2 1/2 Req=(5/3  ) ( r )  . . . .  =(5/3)1/2(3.38)=4.36fm 

40 40 nucleons 
d - (4/3)7rR3e q - (4/3)~.(4.36)3 - 0.115 (fro) ~ 

(D.2) 

(D.3) 
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Radial parameter  ro [equation (5)]: 

ro = {(47r/3)d} -1/3 = {(4-n'/3)(0.115)} -1/3 = 1.28 

Anagnostatos 

fm 
(nucleon) 1/3 

(D.4) 

APPENDIX E: CREATION OF H O L E S  AND "ANALYSIS"  OF 
E Q U I L I B R I U M  P O L Y H E D R A  INTO SIMPLER ONES 

As one can see from Figure 1 some polyhedra vertices are unoccupied 
(are empty, called holes), and some equilibrium polyhedra are analyzed 
into simpler equilibrium polyhedra (called member  polyhedra of  the initial 
polyhedron).  The explanation of both is the purpose of the present appendix. 

Creation of holes: We use again 4~ as an example. I f  we consider 
now that the Z3 in Figure 1 (that is, the last proton polyhedron in 4~ 
has no empty vertices but protons are assumed at its vertices labeled h, then 
these proton spheres overlap with the proton sphere of  the Z1,  since 
R z 2 -  Rzl  = 2.541 - 1.554 = 0.987 fro. Indeed, this difference of  the radii of  
the exscribed spheres of  the polyhedra Z1 and Z2  defined by the proton 
centers is smaller than the double of  the proton radius rp =0.860 fm 
(minimum distance of proton sphere centers when they are in contact). 
Since such an overlapping is against assumption (b), where hard spheres 
are assumed, we have the creation of holes in the Z2. These holes form a 
cube (hexahedron).  The Z4  is really the smallest cube that can be filled 
after Z2  and is in contact with it. One could think that we can avoid the 
holes in the Z3 by increasing its radius to become equal to the radius of  
the Z4.~In this case only proton spheres of  the Z3 at the vertices labeled 
h would be in contact with proton spheres of  the Z2. All other proton 
spheres of  Z3 would not be in contact with any sphere. In such a situation 
one could easily show that the rms charge radius of  4~ (and of the next 
closed-shell nuclei) would be much larger than the experimental value, 
while the binding energy would be much smaller. 

The existence of holes at an equilibrium polyhedron does not violate 
the condition of  equilibrium of particles assumed at the remaining vertices, 
when these holes are distributed in such a way on the polyhedron that they 
form another  equilibrium polyhedron. Such are the cases of  holes in all 
parts of  Figure 1. 

Analysis of  Polyhedra: As an example, we take now the rhombic 
tr iancontahedron of insert 1, which is analyzed into three member  polyhedra,  
namely, the Z4,  Z5,  and Z6. I f  such an analysis did not happen,  the Z4  
would have to increase its size to take the place of the holes in the Z6,  and 
the Z5 would also have to increase its size so that its edges and the edges 
of  the Z6  could bisect each other at right angles (see Figure 4, column 5, 
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row 3 and caption of this figure) in order for the vertices of Z5 and Z6 to 
form the rhombic triancontahedron. Then, the Z5 and Z6 would have a 
common middle sphere (~R) for which from Table III we would have 

1R12 = 2.6180L12 = 2 . 6 1 8 0 ( ~ )  (E.1) 

/ oR2o \ 
lR2o = 1.6180L2o= 1 . 6 1 8 0 ~ )  (E.2) 

and since 1R12 = 1R2o we would get 

oR2o = (1.098) oRl2 (E.3) 

or  

Rzs = (1.098) Rz6 --- 6.222 fm (E.4) 

Obviously, these new sizes of the Z4 and Z5 would lead to much larger 
rms charge radii and much smaller binding energies for all closed-shell 
nuclei having these polyhedra in their isomorphic structure. Thus, this 
analysis serves the same purpose as the existence of holes. The analysis of 
an equilibrium polyhedron into member polyhedra does not violate the 
condition of equilibrium of particles assumed at the vertices of the initial 
polyhedron, as long as each of the member polyhedra is an equilibrium 
polyhedron. Obviously, the anglar vertex distribution of the initial polyhe- 
dron is identical with the angular vertex distributions of the derived poly- 
hedra taken together. All the analyses of polyhedra made in Figure 1 are 
of such a type. 
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